注册 登录  
 加关注
   显示下一条  |  关闭
温馨提示!由于新浪微博认证机制调整,您的新浪微博帐号绑定已过期,请重新绑定!立即重新绑定新浪微博》  |  关闭

hhfighting的博客

以责人之心责己,以恕己之心恕人

 
 
 

日志

 
 
 
 

【转载】LaTeX数学公式  

2015-08-25 09:09:44|  分类: 每日小记 |  标签: |举报 |字号 订阅

  下载LOFTER 我的照片书  |
本文转载自goldman《LaTeX数学公式》

zz from: http://blog.sina.com.cn/wangzhaoli11, revised by Goldman2000@126
1、数学公式的前后要加上 $\(\),比如:$f(x) = 3x + 7$\(f(x) = 3x + 7\) 效果是一样的;
如果用 \[\],或者使用 $$$$,则该公式独占一行;
如果用
\begin{equation}\end{equation},则公式除了独占一行还会自动被添加序号, 如何公式不想编号则使用 \begin{equation*}\end{equation*}.


2、字符
普通字符在数学公式中含义一样,除了
# $ % & ~ _ ^ \ { }
若要在数学环境中表示这些符号# $ % & _ { },需要分别表示为\# \$ \% \& \_ \{ \},即在个字符前加上\


3、上标和下标
^ 来表示上标,用 _ 来表示下标,看一简单例子:

$$\sum_{i=1}^n a_i=0$$
$$f(x)=x^{x^x}$$

效果:

LaTeX技巧10:LaTeX数学公式输入初级入门

这里有更多的LaTeX上标下标的设置


4、希腊字母
更多请参见
这里


5、数学函数

例如sin x, 输入应该为\sin x


6、在公式中插入文本可以通过 \mbox{text} 在公式中添加text,比如:

\documentclass{article}
\usepackage{CJK}
\begin{CJK*}{GBK}{song}
\begin{document}
$$\mbox{对任意的$x>0$}, \mbox{有 }f(x)>0. $$
\end{CJK*}
\end{document}

效果:

LaTeX技巧10:LaTeX数学公式输入初级入门


7、分数及开方

\frac{numerator}{denominator} \sqrt{expression_r_r_r}表示开平方,
\sqrt[n]{expression_r_r_r} 表示开 n 次方.


8、省略号(3个点)

\ldots 表示跟文本底线对齐的省略号;\cdots 表示跟文本中线对齐的省略号,

比如:

LaTeX技巧10:LaTeX数学公式输入初级入门

表示为 $$f(x_1,x_x,\ldots,x_n) = x_1^2 + x_2^2 + \cdots + x_n^2 $$


9、括号和分隔符
()[ ] 对应于自己;
{} 对应于 \{ \}
|| 对应于 \|
当要显示大号的括号或分隔符时,要对应用 \left\right,如:

\[f(x,y,z) = 3y^2 z \left( 3 + \frac{7x+5}{1 + y^2} \right).\]对应于


\left. \right. 只用与匹配,本身是不显示的,比如,要输出:

LaTeX技巧10:LaTeX数学公式输入初级入门

则用 $$\left. \frac{du}{dx} \right|_{x=0}.$$


10、多行的数学公式

LaTeX技巧10:LaTeX数学公式输入初级入门

可以表示为:

\begin{eqnarray*}
\cos 2\theta & = & \cos^2 \theta - \sin^2 \theta \\
& = & 2 \cos^2 \theta - 1.
\end{eqnarray*}

其中&是对其点,表示在此对齐。
*使latex不自动显示序号,如果想让latex自动标上序号,则把*去掉


11、矩阵

LaTeX技巧10:LaTeX数学公式输入初级入门

表示为:

The \emph{characteristic polynomial} $\chi(\lambda)$ of the
$3 \times 3$~matrix
\[ \left( \begin{array}{ccc}
a & b & c \\
d & e & f \\
g & h & i \end{array} \right)\]
is given by the formula
\[ \chi(\lambda) = \left| \begin{array}{ccc}
\lambda - a & -b & -c \\
-d & \lambda - e & -f \\
-g & -h & \lambda - i \end{array} \right|.\]

c表示向中对齐,l表示向左对齐,r表示向右对齐。


12、导数、极限、求和、积分(Derivatives, Limits, Sums and Integrals)

The expression_r_r_rs

LaTeX技巧10:LaTeX数学公式输入初级入门

are obtained in LaTeX by typing

\frac{du}{dt} and \frac{d^2 u}{dx^2}

respectively. The mathematical symbol LaTeX技巧10:LaTeX数学公式输入初级入门 is produced using \partial. Thus the Heat Equation

LaTeX技巧10:LaTeX数学公式输入初级入门

is obtained in LaTeX by typing

\[ \frac{\partial u}{\partial t}
= h^2 \left( \frac{\partial^2 u}{\partial x^2}
+ \frac{\partial^2 u}{\partial y^2}
+ \frac{\partial^2 u}{\partial z^2}\right)\]

To obtain mathematical expression_r_r_rs such as

LaTeX技巧10:LaTeX数学公式输入初级入门

in displayed equations we type \lim_{x \to +\infty}, \inf_{x > s} and \sup_K respectively. Thus to obtain

LaTeX技巧10:LaTeX数学公式输入初级入门

(in LaTeX) we type

\[ \lim_{x \to 0} \frac{3x^2 +7x^3}{x^2 +5x^4} = 3.\]

Added by Goldman2000@126:-------------------------

To compulsively display "u \to \infty" under the limit, 

LaTeX数学公式 - goldman - 重头再来
 

we type in LaTeX

\frac{1}{\lim_{u \rightarrow \infty}}, \frac{1}{\lim\limits_{u \rightarrow \infty}} or

\frac{1}{ \displaystyle \lim_{u \rightarrow \infty}} respectively.

Ended by Goldman2000@126: -------------------------


To obtain a summation sign such as

LaTeX技巧10:LaTeX数学公式输入初级入门

we type \sum_{i=1}^{2n}. Thus

LaTeX技巧10:LaTeX数学公式输入初级入门

is obtained by typing

\[ \sum_{k=1}^n k^2 = \frac{1}{2} n (n+1).\]

We now discuss how to obtain integrals in mathematical documents. A typical integral is the following:

LaTeX技巧10:LaTeX数学公式输入初级入门

This is typeset using

\[ \int_a^b f(x)\,dx.\]

The integral sign is typeset using the control sequence \int, and the limits of integration (in this case a and b are treated as a subscript and a superscript on the integral sign.
Most integrals occurring in mathematical documents begin with an integral sign and contain one or more instances of d followed by another (Latin or Greek) letter, as in dx, dy and dt. To obtain the correct appearance one should put extra space before the d, using \,. Thus

LaTeX技巧10:LaTeX数学公式输入初级入门

LaTeX技巧10:LaTeX数学公式输入初级入门

LaTeX技巧10:LaTeX数学公式输入初级入门

and

LaTeX技巧10:LaTeX数学公式输入初级入门

are obtained by typing

\[ \int_0^{+\infty} x^n e^{-x} \,dx = n!.\]

\[ \int \cos \theta \,d\theta = \sin \theta.\]

\[ \int_{x^2 + y^2 \leq R^2} f(x,y)\,dx\,dy
= \int_{\theta=0}^{2\pi} \int_{r=0}^R
f(r\cos\theta,r\sin\theta) r\,dr\,d\theta.\]

and

\[ \int_0^R \frac{2x\,dx}{1+x^2} = \log(1+R^2).\]

respectively.

In some multiple integrals (i.e., integrals containing more than one integral sign) one finds that LaTeX puts too much space between the integral signs. The way to improve the appearance of of the integral is to use the control sequence \! to remove a thin strip of unwanted space. Thus, for example, the multiple integral

LaTeX技巧10:LaTeX数学公式输入初级入门

is obtained by typing

\[ \int_0^1 \! \int_0^1 x^2 y^2\,dx\,dy.\]

Had we typed

\[ \int_0^1 \int_0^1 x^2 y^2\,dx\,dy.\]

we would have obtained

LaTeX技巧10:LaTeX数学公式输入初级入门

A particularly noteworthy example comes when we are typesetting a multiple integral such as

LaTeX技巧10:LaTeX数学公式输入初级入门

Here we use \! three times to obtain suitable spacing between the integral signs. We typeset this integral using

\[ \int \!\!\! \int_D f(x,y)\,dx\,dy.\]

Had we typed

\[ \int \int_D f(x,y)\,dx\,dy.\]

we would have obtained

LaTeX技巧10:LaTeX数学公式输入初级入门

The following (reasonably complicated) passage exhibits a number of the features which we have been discussing:

LaTeX技巧10:LaTeX数学公式输入初级入门

One would typeset this in LaTeX by typing In non-relativistic wave mechanics, the wave function
$\psi(\mathbf{r},t)$ of a particle satisfies the
\emph{Schr\"{o}dinger Wave Equation}
\[ i\hbar\frac{\partial \psi}{\partial t}
= \frac{-\hbar^2}{2m} \left(
\frac{\partial^2}{\partial x^2}
+ \frac{\partial^2}{\partial y^2}
+ \frac{\partial^2}{\partial z^2}
\right) \psi + V \psi.\]
It is customary to normalize the wave equation by
demanding that
\[ \int \!\!\! \int \!\!\! \int_{\textbf{R}^3}
\left| \psi(\mathbf{r},0) \right|^2\,dx\,dy\,dz = 1.\]
A simple calculation using the Schr\"{o}dinger wave
equation shows that
\[ \frac{d}{dt} \int \!\!\! \int \!\!\! \int_{\textbf{R}^3}
\left| \psi(\mathbf{r},t) \right|^2\,dx\,dy\,dz = 0,\]
and hence
\[ \int \!\!\! \int \!\!\! \int_{\textbf{R}^3}
\left| \psi(\mathbf{r},t) \right|^2\,dx\,dy\,dz = 1\]
for all times~$t$. If we normalize the wave function in this
way then, for any (measurable) subset~$V$ of $\textbf{R}^3$
and time~$t$,
\[ \int \!\!\! \int \!\!\! \int_V
\left| \psi(\mathbf{r},t) \right|^2\,dx\,dy\,dz\]
represents the probability that the particle is to be found
within the region~$V$ at time~$t$.

  评论这张
 
阅读(18)| 评论(0)
推荐 转载

历史上的今天

在LOFTER的更多文章

评论

<#--最新日志,群博日志--> <#--推荐日志--> <#--引用记录--> <#--博主推荐--> <#--随机阅读--> <#--首页推荐--> <#--历史上的今天--> <#--被推荐日志--> <#--上一篇,下一篇--> <#-- 热度 --> <#-- 网易新闻广告 --> <#--右边模块结构--> <#--评论模块结构--> <#--引用模块结构--> <#--博主发起的投票-->
 
 
 
 
 
 
 
 
 
 
 
 
 
 

页脚

网易公司版权所有 ©1997-2017